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Abstract
Aim:	Mangrove	 forests	are	among	the	most	 threatened	and	rapidly	vanishing,	but	
poorly	understood	ecosystems.	We	aim	to	uncover	the	variables	driving	mangrove	
biodiversity	and	produce	baseline	biodiversity	maps	for	the	Sundarbans	world	herit-
age site—the Earth's largest contiguous mangrove ecosystem.
Location:	The	Bangladesh	Sundarbans,	South	Asia.
Methods:	 We	 collected	 species	 abundance,	 environmental	 and	 disturbance	 data	
from	110	permanent	sample	plots	(PSPs)	covering	the	entire	Bangladesh	Sundarbans	
(6,017	km2).	We	applied	generalized	additive	models	to	determine	the	key	variables	
shaping	the	spatial	distributions	of	mangrove	diversity	and	community	composition.	
Biodiversity	maps	were	constructed	using	covariate-driven	habitat	models,	and	their	
predictive	performances	were	 compared	with	 covariate-free	 (i.e.,	 direct	 interpola-
tion)	approaches	to	see	whether	the	inclusion	of	habitat	variables	bolster	spatial	pre-
dictions	of	biodiversity	or	whether	we	can	rely	on	direct	 interpolation	approaches	
when environmental data are not available.
Results:	Historical	forest	exploitation,	disease,	siltation	and	soil	alkalinity	were	the	
key	stressors	causing	loss	of	alpha	and	gamma	diversity	in	mangrove	communities.	
Both	alpha	and	gamma	diversity	increased	along	the	downstream-to-upstream	and	
riverbank-to-forest	interior	gradients.	Mangrove	communities	subjected	to	intensive	
past	 tree	 harvesting,	 disease	 outbreaks	 and	 siltation	were	more	 homogeneous	 in	
species	composition	(beta	diversity).	In	contrast,	heterogeneity	in	species	composi-
tion	increased	along	decreasing	salinity	and	downstream-to-upstream	gradients.	We	
find	that	the	surviving	biodiversity	hotspots	(comprising	many	globally	endangered	
tree	species)	are	located	outside	the	established	protected	area	network	and	hence	
open	to	human	exploitation.	We	therefore	suggest	bringing	them	immediately	under	
protected	area	management.
Main conclusions:	 We	 provide	 the	 first	 habitat-based	 modelling	 and	 mapping	 of	
alpha,	beta	and	gamma	diversity	 in	threatened	mangrove	communities.	 In	general,	
habitat-based	models	 showed	better	 predictive	 ability	 than	 the	 covariate-free	 ap-
proach.	 Nevertheless,	 the	 small	 margin	 of	 differences	 between	 the	 approaches	
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1  | INTRODUC TION

Tropical	and	subtropical	mangrove	forests	(between	30°	N	and	30°	
S)	provide	numerous	ecosystem	services	and	support	coastal	 live-
lihoods	worldwide	(Lee	et	al.,	2014).	However,	they	are	among	the	
most	threatened	and	rapidly	vanishing	habitats	on	Earth	(Polidoro	et	
al.,	2010;	Richards	&	Friess,	2016).	The	mangrove	biome	has	already	
lost	about	50%	of	its	coverage	since	the	1950s	(Feller	et	al.,	2010),	
and	 IUCN	has	 listed	40%	of	mangrove	 tree	 species	 as	 threatened	
(Polidoro	et	al.,	2010).	Increasing	anthropogenic	pressures	and	antic-
ipated	sea	level	rise	are	likely	to	alter	the	structure	and	functions	of	
the	remaining	endangered	mangrove	forests	(Duke	et	al.,	2007),	 in	
particular,	the	Sundarbans	UNESCO	world	heritage	site—the	Earth's	
largest contiguous mangrove ecosystem.

Making	 spatial	predictions	of	biodiversity	 is	 important	 for	pin-
pointing	the	locations	or	communities	requiring	immediate	or	long-
term	protection	and	conservation	actions,	 in	evaluating	 threats	 to	
those	communities	and	in	monitoring	spatial	distributions	and	tem-
poral	 dynamics	 in	 biodiversity	 (Socolar,	 Gilroy,	 Kunin,	 &	 Edwards,	
2015).	A	variety	of	biodiversity	modelling	approaches	(e.g.,	stacked	
species	 distribution	 models,	 macroecological	 models,	 ordination	
and	 stochastic	 models—Ferrier	 &	 Guisan,	 2006;	 Mateo,	 Mokany,	
&	Guisan,	2017)	have	been	applied	 to	understand	 the	 spatial	 pat-
terns	 of	 species	 richness	 and	 composition	 in	 different	 forest	 eco-
systems	(e.g.,	neotropical,	boreal	and	temperate	forests).	However,	
their	 application	 to	 mangrove	 forests	 is	 limited	 (but	 see	 Record,	
Charney,	Zakaria,	&	Ellison,	2013)	due	to	the	scarcity	of	 field	data	
(Ellison,	 2001),	 thus	 resulting	 in	 poor	 understanding	 of	 mangrove	
biogeography.

Each	of	the	three	established	components	of	biodiversity	(alpha,	
beta	 and	 gamma—Whittaker,	 1960)	 characterizes	 different	 funda-
mental	attributes	of	natural	communities,	and	therefore	has	specific	
conservation	implications.	For	example,	spatial	maps	of	alpha	diver-
sity	can	help	in	specifying	the	most	species-rich	habitats	while	beta	
diversity	 maps	 can	 determine	 the	most	 heterogeneous	 communi-
ties,	where	protecting	larger	areas	will	encompass	more	biodiversity.	
Similarly,	 gamma	diversity	measures	 can	 identify	 the	overall	 areas	
with	the	highest	biodiversity.	Thus	far,	mangrove	biodiversity	studies	
have	mostly	relied	on	alpha	diversity,	and	in	particular	species	rich-
ness	(Ellison,	2001;	Osland	et	al.,	2017;	Record	et	al.,	2013)	which,	
by	ignoring	the	variability	in	species	relative	abundances,	has	known	
weaknesses	 in	 identifying	 areas	 for	 prioritization	 (Veach,	 Minin,	
Pouzols,	&	Moilanen,	2017).	At	a	regional	scale,	mangrove	plant	com-
munities	may	look	spatially	homogeneous	because	mangrove	forests	

are	relatively	species-poor	compared	to	the	upland	tropical	forests.	
However,	at	 finer	scales,	considerable	heterogeneity	 in	vegetation	
structure	becomes	apparent	(Farnsworth,	1998).	Therefore,	looking	
at	how	the	components	of	biodiversity	respond	to	biotic	and	abiotic	
variables	is	important	for	constructing	more	informative	and	practi-
cally	useful	biodiversity	maps.

Mapping	biodiversity	indices	is	important	in	order	to	investigate	
spatio-temporal	variations	in	natural	communities,	to	locate	habitats	
or	 communities	 or	 species	 that	 require	 immediate	 protection	 and	
to	 support	 spatially	explicit	 conservation	planning	 (Devictor	et	 al.,	
2010).	 Both	 habitat-based	 and	 covariate-free	 (direct	 interpolation	
methods	such	as	Kriging)	approaches	have	been	used	for	mapping	
biodiversity	indices.	Although	covariate-free	approaches	have	been	
criticized	for	low	predictive	ability	(Granger	et	al.,	2015),	the	relative	
performance	of	 the	 approaches	has	 rarely	been	 tested	using	 field	
data.

Testing	 the	 “zonation”	 hypothesis	 (i.e.,	 the	 distinct	 ordering	 of	
tree	species	along	the	shore-to-inland	gradient,	Ellison,	Mukherjee,	
&	Karim,	2000)	and	explaining	the	“biodiversity	anomaly”	(i.e.,	why	
mangrove	plant	species	richness	drops	along	the	latitudinal	gradient,	
Ricklefs,	Schwarzbach,	&	Renner,	2006)	have	been	the	key	agendas	
dominating the mangrove biodiversity literature in the last two de-
cades.	While	 such	 studies	have	 substantially	 improved	our	 insight	
into	species	sorting	and	richness,	limited	attention	has	been	paid	to	
understanding	how	abiotic,	biotic	and	historical	anthropogenic	pres-
sures	 have	 contributed	 to	 spatial	 variations	 in	mangrove	 diversity	
and	composition.	Such	knowledge	gaps	have	obstructed	the	success	
of	 conservation	 initiatives	 in	many	 tropical	 coastal	 regions	 (Lewis,	
2005)	such	as	the	Sundarbans.

This	study	focused	on	the	threatened	mangrove	plant	commu-
nities	 of	 the	 Sundarbans	which	 are	 under	 severe	 threat	 from	 his-
torical	 forest	 exploitation,	 habitat	 degradation	 and	 future	 climate	
change	 impacts	 (Sarker,	Reeve,	Thompson,	Paul,	&	Matthiopoulos,	
2016).	Using	 a	 newly	 introduced	 abundance-based	 framework	 for	
biodiversity	partitioning	(Reeve	et	al.,	2016)	and	a	habitat-based	bio-
diversity	modelling	approach,	our	overarching	goal	was	to	uncover	
the	influences	of	fine-scale	habitat	conditions	and	historical	events	
in	shaping	the	current	spatial	distributions	of	alpha,	beta	and	gamma	
diversity.	Our	more	specific	questions	 include	the	following:	What	
are	the	key	drivers	of	mangrove	biodiversity?	How	do	the	predictive	
abilities	of	covariate-driven	habitat	models	compare	with	 those	of	
covariate-free	direct	interpolation	approaches?	Where	are	the	bio-
diversity	hotspots	 in	 the	Sundarbans	currently	 located?	Are	 these	
hotspots	well	 protected?	 Finally,	we	 demonstrate	 and	 discuss	 the	

demonstrates	the	utility	of	direct	interpolation	approaches	when	environmental	data	
are unavailable.

K E Y W O R D S

biodiversity	conservation,	endangered	species,	generalized	additive	models,	habitat	
rehabilitation,	protected	area,	sea	level	rise
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potential	applications	of	these	novel	insights	and	biodiversity	maps	
for	 future	mangrove	 research,	 biodiversity	 protection,	 monitoring	
and	spatial	conservation	planning.

2  | METHODS

2.1 | Study area

The	 Sundarbans	 (10,017	km2),	 a	 part	 of	 Earth's	 largest	 delta,	 the	
Ganges–Brahmaputra,	 is	 distributed	 in	Bangladesh	 and	 India.	Due	
to	 its	 outstanding	 universal	 ecological	 and	 economic	 value,	 the	
Bangladesh	 part	 of	 the	 Sundarbans	 (21°30′–22°30′N,	 89°	 00′–
89°55′E,	6,017	km2)	was	declared	a	UNESCO	world	heritage	site	in	
1997	(Gopal	&	Chauhan,	2006).	It	was	also	declared	a	Ramsar	wet-
land	ecosystem	under	the	Ramsar	Convention	in	1992	(Chowdhury,	
Kitin,	 Ridder,	 Delvaux,	 &	 Beeckman,	 2016).	 The	 Sundarbans	 is	
washed	 by	 the	 tide	 twice	 a	 day,	 and	 freshwater	 flowing	 from	 the	
Ganges	and	 the	opposing	 saltwater	 influx	 from	 the	Bay	of	Bengal	
together	 control	 its	 hydrology	 (Wahid,	 Babel,	 &	 Bhuiyan,	 2007).	
The	 climate	 is	 humid	 tropical	 with	 four	 main	 seasons	 as	 follows:	
pre-monsoon	(March–May),	monsoon	(June–September),	post-mon-
soon	 (October–November)	and	 the	dry	winter	 season	 (December–
February).	 The	 average	 annual	 precipitation	 is	 1700	mm,	 and	 the	

mean	temperatures	in	pre-monsoon,	monsoon,	post-monsoon,	and	
dry	winter	are	29,	30,	26	and	20°C,	respectively	(Chowdhury,	Ridder,	
&	Beeckman,	2016).

2.2 | Tree and environmental data collection

We	 collected	 tree	 data	 from	 the	 110	 permanent	 sample	 plots	
(PSPs,	 100	×	20	m,	 divided	 into	 5	 20	×	20	m	 subplots)	 covering	 all	
salinity	zones	 (i.e.,	hypo-,	meso-	and	hypersaline	zones)	and	forest	
types	(see	Iftekhar	&	Saenger,	2008)	in	the	Bangladesh	Sundarbans.	
The	Bangladesh	Forest	Department	 (BFD)	 established	 these	PSPs	
(Figure	1)	in	1986.	As	part	of	the	2008–2014	surveys,	our	team	to-
gether	with	the	BFD	tagged	every	tree	with	stem	diameter	≥4.6	cm	
(because	mangroves	grow	very	slowly,	this	threshold	value	has	been	
used	 in	all	previous	forest	 inventories	 in	 the	Sundarbans	since	the	
19th	century,	 Iftekhar	&	Saenger,	2008),	at	1.3	m	from	the	ground	
with	a	unique	tree	number	and	recorded	tree	counts	for	the	PSPs.	
In	 total,	we	recorded	49,409	trees	from	20	mangrove	species	 (see	
Appendix	S1	in	Supporting	Information).

In	 2014	 (January–June),	 we	 collected	 nine	 soil	 samples	 from	
each	PSP	 (soil	depth	=	15	cm)	adopting	a	 soil	 sampling	design	 (see	
Appendix	S1	 in	Supporting	 Information)	to	account	for	the	within-
plot	variations	 in	 soil	variables.	We	then	determined	soil	 sand,	 silt	

F I G U R E  1  Sampling	sites	(triangles)	in	the	Sundarbans,	Bangladesh.	Blue	areas	represent	water	bodies
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and	 clay	 percentages,	 salinity,	 pH,	 oxidation	 reduction	 potential,	
NH4,	P,	K,	Mg,	Fe,	Zn,	Cu	and	sulphide	concentrations.	For	determin-
ing	sand,	slit	and	clay	percentages,	we	used	the	hydrometer	method	
(Gee	&	Bauder,	1986).	We	measured	soil	salinity	(as	electrical	con-
ductivity)	in	a	1:5	distilled	water:soil	dilution	(Hardie	&	Doyle,	2012)	
using	a	conductivity	metre.	Soil	pH	and	oxidation	reduction	poten-
tial	were	measured	 in	 the	 field	using	 soil	pH	and	oxidation	 reduc-
tion	potential	metres.	We	followed	the	Kjeldahl	method	(Bremner	&	
Breitenbeck,	1983)	to	determine	soil	NH4 and the molybdovanadate 
method	(Ueda	&	Wada,	1970)	to	determine	total	P	concentrations.	
Soil	K,	Mg,	Fe	and	Zn	concentrations	were	measured	using	an	atomic	
absorption	spectrophotometer.	For	each	soil	variable,	we	recorded	
the	average	reading	from	nine	soil	samples.

We	 retrieved	 five	 elevation	 readings	 (above-average	 sea	 level)	
from	each	PSP	using	the	available	digital	elevation	model	(accuracy	
at	 pixel	 level	=	±1	m)	 (IWM,	2003)	 and	 then	 averaged	 them	 to	 ac-
count	for	sampling	error.	We	also	calculated	the	“upriver	position”	
(URP),	the	straight-line	distance	of	each	PSP	from	the	river–sea	in-
terface	(Duke,	Ball,	&	Ellison,	1998)	and	classified	their	position	as	(i)	
“downstream,”	representing	the	 lower	third	(0%–33%	upriver	from	
the	sea—Bay	of	Bengal),	(ii)	“intermediate,”	representing	the	middle	
third	(34%–66%	upriver	from	the	sea)	and	(iii)	“upstream,”	represent-
ing	the	upper	third	(67%–100%	upriver	from	the	sea)	of	the	estuarine	
system.	This	classification	system	 is	useful	 for	understanding	vari-
ability	in	diversity	and	species	compositions	along	the	downstream	
(saltwater-dominated	 river	 system)–upstream	 (freshwater-domi-
nated	river	system)	gradient.

2.3 | Covariate selection

We	followed	Twilley	and	Rivera-Monroy's	(2005)	mangrove-centric	
conceptual	 framework	 to	construct	a	biologically	 informative	vari-
able	set	for	our	mangrove	biodiversity	models.	This	framework	inte-
grates	abiotic	and	biotic	constraints	to	explain	vegetation	structure	
and	productivity	at	local	and	regional	scales.	The	abiotic	constraints	
comprise	resources,	regulators	and	hydroperiod.	Resources	(i.e.,	nu-
trients)	are	assimilated	by	 trees.	Here,	we	selected	 three	essential	
plant	macro-nutrients—soil	NH4,	P	and	K—for	 their	critical	 roles	 in	
mangrove	growth	and	development	(Reef,	Feller,	&	Lovelock,	2010).	
Regulators	are	non-resource	variables	 that	control	 tree	eco-physi-
ology	(Guisan	&	Thuiller,	2005).	Here,	we	selected	soil	salinity,	pH	
and	silt.	Hydroperiod	(i.e.,	inundation	frequency,	duration	and	depth)	
controls	the	regional	and	local	hydrology	that	in	turn	influence	spe-
cies	 distributions	 in	 coastal	 environments	 (Crase,	 Liedloff,	 Vesk,	
Burgman,	&	Wintle,	2013).	PSP-level	hydroperiod	data	were	unavail-
able,	so	we	used	elevation	as	a	proxy	of	the	likely	variation	in	hydro-
period	across	the	region.

Biotic	 interactions	 (e.g.,	 competition	 or	 facilitation)	 between	
plants	 can	 influence	 species	 composition	 at	 a	 local	 scale	 (Howard	
et	al.,	2015).	Competitive	exclusion	of	weak	competitors	in	stressed	
mangrove	 habitats	may	 lead	 to	 species-poor	mangrove	 communi-
ties	 dominated	 by	 a	 single	 or	 few	 opportunistic	 species	 (Saenger,	
2002).	To	account	for	such	 influences,	 initially,	we	considered	two	

candidate	biotic	variables:	(i)	“community	size”	(CS)—total	number	of	
individuals	in	each	PSP,	and	(ii)	total	basal	area	in	each	PSP.	Diversity	
models	using	basal	area	as	a	covariate	had	lower	explanatory	pow-
ers,	compared	to	models	with	“CS.”	Therefore,	we	selected	CS	as	a	
proxy	of	biotic	interactions.

We	incorporated	URP	of	each	PSP	in	our	covariate	set	to	account	
for	the	influence	of	the	river	systems	on	species	composition	along	
the	downstream–upstream	gradient.	In	riverine	estuaries,	tidal	inun-
dation	levels,	soil	physical	and	chemical	properties	can	significantly	
vary	 along	 the	 riverbank—inner	 forest	 gradient,	 which	 influences	
colonization	success	and	survival	of	mangrove	plants	(Berger,	2008).	
To	account	for	such	variations,	we	included	the	straight-line	distance	
of	each	PSP	from	the	nearest	riverbank	(henceforth	DR).

Tropical	 coastal	 ecosystems	are	prone	 to	both	natural	 and	an-
thropogenic	 disturbances	 (Feller,	 Friess,	 Krauss,	 &	 Lewis,	 2017).	
Natural	 disturbances	 (such	 as	 tree	 disease	 and	mortality)	 and	 an-
thropogenic	 disturbances	 (such	 as	 tree	 harvesting)	 offer	 opportu-
nities	 for	 tree	 recruitment	 through	 gap	 creation,	 thus	 influencing	
vegetation	composition	(Duke,	2001).	To	account	for	the	influences	
of	natural	and	human	disturbances	on	current	diversity	and	species	
composition,	we	incorporated	historical	harvesting	(HH)	and	disease	
prevalence	(DP)	as	covariates	in	our	models.	Here,	HH	and	DP	repre-
sent	the	total	number	of	illegally	harvested	and	diseased	(e.g.,	“top-
dying”	disease	of	Heritiera fomes)	 trees	 in	each	PSP	from	historical	
records	 (1986–2014).	Finally,	using	Variance	 Inflation	Factors	 (VIF,	
Robinson	&	Schumacker,	2009),	we	checked	for	multicollinearity	in	
our	covariates	(see	Appendix	S2)	and	removed	covariates	leading	to	
VIF	greater	than	2.5.	This	led	to	the	removal	of	oxidation	reduction	
potential	from	our	covariate	set	(see	Appendix	S2).

2.4 | Biodiversity partitioning

For	 partitioning	 biodiversity,	 we	 used	 Rényi's	 generalized	 relative	
entropy	(Rényi,	1961),	an	extension	of	Hill	(1973),	Jost	(2006,	2007)	
and	Leinster	and	Cobbold's	 (2012)	notions	of	ecosystem	diversity.	
Implemented	 in	Reeve	 et	 al.'s	 (2016)	 framework,	 this	 allows	 us	 to	
partition	the	alpha,	beta	and	gamma	diversity	of	an	ecosystem	(called	
a metacommunity	[MC])	into	its	subcommunity	(SC)	components,	thus	
allowing	comprehensive	and	consistent	quantification	and	modelling	
of	all	biodiversity	components	in	a	spatial	context.

In	this	study,	each	PSP	represents	a	SC,	and	the	combined	PSPs	
form	the	MC.	This	approach	allows	us	to	understand	and	easily	com-
pare	the	species	diversity	and	composition	in	every	single	SC	in	re-
lation	to	the	MC	(the	whole	Sundarbans	ecosystem).	We	measured	
SC	 alpha,	 beta	 and	 gamma	 diversity.	 Here,	 the	 normalized	 alpha	
diversity	 index	 (denoted	 �̄�)	 represents	 the	diversity	of	 a	 single	 SC	
(PSP)	 in	 isolation.	The	normalized	beta	diversity	 index	 (denoted	 �̄�)	
measures	representativeness	and	assesses	how	well	a	SC	represents	
the	species	composition	of	its	MC.	It	is	maximized	(1)	when	the	MC	
is	homogenous,	and	a	SC's	species	composition	is	identical	to	that	of	
the	MC	and	therefore	represents	it	perfectly.	Low	�̄�	therefore	sug-
gests	high	spatial	heterogeneity	 in	 species	composition	within	 the	
MC,	and	high	�̄�	suggests	spatial	homogeneity.
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The	gamma	diversity	(denoted	γ)	is	the	conventional	gamma	di-
versity	(Hill,	1973;	Jost,	2006;	Leinster	&	Cobbold,	2012)	at	the	MC	
level	that	reflects	the	total	species	diversity	in	an	unpartitioned	eco-
system.	Reeve	et	al.'s	 (2016)	 framework	partitions	 the	MC	gamma	
diversity	into	SC	gamma	diversity	that	measures	each	PSP's	average	
contribution	to	(or	influence	on)	the	MC	diversity	per	tree.	This	di-
versity	measure	combines	the	alpha	diversity	of	a	SC	with	its	beta	
diversity	 to	 form	an	assessment	of	 the	overall	 contribution	of	 the	
PSP	to	the	MC.

Following	 Hill	 (1973),	 Jost	 (2006,	 2007)	 and	 Leinster	 and	
Cobbold's	 (2012),	 the	 values	 of	 all	 the	 biodiversity	 measures	 are	
moderated	by	a	viewpoint	parameter,	q,	 taking	a	value	between	0	
and	∞	representing	how	conservative	the	measure	is	in	accounting	
for	species	abundance.	For	�̄� and �,	the	diversity	at	q = 0 measures 
species	 richness;	 at	 q	=	1	 measures	 the	 exponential	 of	 Shannon	
entropy	 (Shannon,	 1948);	 and	 at	 q	=	2	 measures	 the	 inverse	 of	
Simpson's	concentration	index	(Simpson,	1948).	For	all	analyses,	we	
present	the	results	using	the	above	three	q	values	(0,	1,	and	2),	writ-
ing them as 0�̄�, 1�̄�, 2𝛾,	etc.

2.5 | Biodiversity modelling

We	constructed	generalized	additive	models	 (GAMs,	Wood,	2011)	
to	quantify	how	 the	different	biodiversity	 components	 responded	
to	 different	 variables.	 Guided	 by	 data	 and	 using	 nonparametric	
smoothing	 functions,	GAMs	can	capture	 response-predictors	 rela-
tionships	without	a	priori	knowledge	of	the	functional	form	of	these	
relationships	(Guisan	&	Thuiller,	2005).	These	advantageous	features	
of	GAMs	are	well	suited	for	uncovering	unknown	biodiversity–en-
vironment	linkages	in	dynamic	ecosystems	such	as	the	Sundarbans	
where	multiple	environmental	gradients	have	interactive	effects	on	
species	distributions	(Sarker	et	al.,	2016).	All	analyses	were	done	in	
R	version	3.2.3	(R	Core	Team,	2016).	Biodiversity	GAMs	were	built	
using	 cubic	 basis	 splines	with	 the	Gamma	 error	 distribution	 using	
the	“mgcv”	package	version	1.8	-	7	(Wood,	2011).	Model	selection	
and	model	averaging	were	carried	out	using	the	“MuMIn”	package	
version	1.15.1	(Barton,	2015).	Biodiversity	measures	were	calculated	
using	the	“rdiversity”	package	version	1.0	(Mitchell	&	Reeve,	2017).

We	 exhaustively	 fitted	 GAMs	 for	 each	 diversity	 index	 with	
all	 possible	 combinations	of	 covariates.	Then,	we	 ranked	 the	 fit-
ted	 GAMs	 using	 the	 second-order	 AIC	 (AICc)	 because	 the	 ratio	
between	 sample	 size	 and	 the	 number	 of	 covariates	 was	 <40	
(Burnham	&	Anderson,	2002).	Models	whose	AICc had values less 
than	 2	 units	 from	 the	 best	 model	 (∆AICc	<	2)	 were	 retained	 as	
competing	models	(Burnham	&	Anderson,	2002).	The	relative	sup-
port	for	each	of	the	competing	models	was	then	determined	using	
their	Akaike	weights	(AICcw	vary	between	0	and	1,	and	the	sum	of	
all	AICcw	across	the	competing	models	is	1).	To	reduce	model	se-
lection	uncertainty	and	bias,	we	then	conducted	model	averaging	
to	predict	the	diversity	indices.	To	determine	the	strength	of	the	
covariates,	we	ranked	them	based	on	their	relative	importance	(RI)	
values.	RI	of	each	covariate	was	calculated	by	totalling	the	AICcw 
of	the	models	in	which	the	covariate	was	included.	RI	values	vary	

between	 0	 and	 1,	where	 0	 specifies	 that	 the	 target	 covariate	 is	
not	 included	in	any	of	the	competing	models	while	1	means	that	
the	 covariate	 is	 included	 in	 all	 competing	models.	We	measured	
goodness	of	fit	of	the	biodiversity	models	using	the	R2 (coefficient	
of	 determination)	 statistic	 between	 the	 observed	 and	 estimated	
values	of	the	diversity	indices.

2.6 | Biodiversity mapping

We	applied	 two	different	 approaches	 to	make	 spatial	 biodiversity	
predictions.	 First,	 we	 used	 our	 habitat-based	models	 (GAMs)	 and	
interpolated	 covariate	 surfaces	 to	 produce	 model-averaged	 pre-
dictions.	Second,	we	used	a	direct	 interpolation	method—ordinary	
kriging—to	make	purely	spatial	predictions.	We	compared	these	two	
approaches	 because	 environmental	 data	 collection	 is	 challenging,	
whereas	 tree	 surveys	are	conducted	annually	at	 the	PSPs.	Hence,	
it	 is	useful	to	know	how	close	the	predictions	of	the	habitat-based	
biodiversity	models	were	compared	to	direct	interpolation	methods.	
The	size	of	each	grid	cell	of	the	 interpolated	surfaces	was	625	m2. 
We	compared	the	predictive	abilities	of	GAMs	with	ordinary	kriging,	
using	the	normalized	root	mean	square	error	(NRMSE)	statistic	de-
rived	from	a	leave-one-out	cross-validation	procedure.	For	normali-
zation,	the	root	mean	square	error	statistic	was	divided	by	the	range	
of	the	actual	diversity	values.	Ordinary	kriging	was	performed	using	
the	“gstat”	package	version	1.0	-	26	(Pebesma,	2004)	in	R.

A	protected	area	network	comprising	three	Wildlife	Sanctuaries	
has	been	operational	in	the	Sundarbans	since	the	1970s.	To	evaluate	
its	 capacity	 to	 support	 the	 remaining	 biodiversity	 hotspots	 in	 the	
Sundarbans,	we	superimposed	this	onto	our	biodiversity	maps.	All	
the	biodiversity	maps	were	constructed	using	the	“raster”	package	
version	2.4	-	18	(Hijmans,	2017)	in	R.

3  | RESULTS

3.1 | Habitat‐based biodiversity models

The	explanatory	power	and	the	goodness	of	fit	of	the	alpha,	beta	and	
gamma	diversity	GAMs	varied	when	we	increased	weight	on	species	
relative	abundances	(q	=	0,	1	and	2)	in	the	subcommunities	(SCs).	1�̄� 
(Shannon	 entropy)	GAM	explained	more	 deviance	 (DE	=	71%)	 and	
showed	a	better	 fit	 to	the	data	 (Adj.	R2	=	0.71)	compared	to	those	
for	0�̄�	(species	richness)	and	2�̄�	(Simpson's	concentration)	(Table	1),	
suggesting	that,	for	alpha	diversity,	the	model	with	a	moderate	focus	
on	species	relative	abundances	in	the	SCs	(i.e.,	q	=	1)	could	capture	
more	 signal	 compared	 to	 the	models	 that	only	 considered	 species	
presence–absence	 (q	=	0)	or	offered	more	 importance	to	the	more	
dominant	species	(q	=	2)	in	the	SCs.	Like	1�̄�,	the	1�̄�	GAM	could	cap-
ture more signal than 0�̄� and 2�̄�	GAMs.	In	contrast,	for	beta	diversity,	
with	DE	=	65%	and	Adj.	R2	=	0.70,	the	2�̄�	GAM	captured	more	signal	
than the 0�̄� and 1�̄�	GAMs,	 implying	that	our	covariates	could	more	
successfully	explain	the	variability	in	species	composition	across	the	
SCs	when	the	variability	was	mostly	contributed	by	more	dominant	
species.
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3.2 | Drivers and responses of 
biodiversity components

The	 RI	 of	 the	 covariates	 in	 influencing	 biodiversity	 indices	 also	
varied	when	we	changed	weight	on	 species	 relative	 abundances	
in	the	SCs.	For	example,	while	HH	had	no	influence	on	0�̄�	(possibly	
due	to	high	number	of	shared	species	between	SCs	or	HH	did	not	
lead	to	species	extirpation),	 it	had	stronger	effects	on	1�̄� and 2�̄�,	
indicating	that	the	influence	of	past	tree	harvesting	in	shaping	cur-
rent	 community	 composition	 becomes	 clearer	when	we	 account	
for	 the	variability	 in	species	 relative	abundances	across	 the	SCs.	
In	general,	several	abiotic	and	biotic	drivers	had	combined	effects	
on	 the	 spatial	 distributions	 of	 the	 biodiversity	 indices.	 SC	 alpha	
diversity	(1�̄�)	was	mainly	influenced	by	community	size	(CS,	RI	=	1),	
upriver	 position	 (URP,	 RI	=	1),	 distance	 to	 river	 (DR,	 RI	=	1),	 and	
silt	 (RI	=	1)	 (Table	 1,	 Appendix	 S3).	 CS	 (RI	=	1),	 URP	 (RI	=	1),	 HH	

(RI	=	0.93),	disease	prevalence	(DP,	RI	=	1)	and	salinity	(RI	=	0.86)	
were	the	predominant	drivers	for	spatial	variations	in	SC	beta	di-
versity	(1�̄�).	SC	gamma	diversity	(1�)	was	mostly	influenced	by	CS	
(RI	=	1),	URP	(RI	=	1),	salinity	 (RI	=	1),	DR	(RI	=	1),	HH	(RI	=	1),	pH	
(RI	=	1)	and	silt	(RI	=	1).

The	partial	response	plots	of	the	best	alpha,	beta	and	gamma	
diversity	GAMs	 (for	 q = 0,	 1	 and	 2)	 showed	 similar	 relationships	
across	the	models	 (Figure	2,	Appendix	S3).	While	alpha	diversity	
(for	1�̄�)	increased	with	increasing	DR	(>1,500	m)	and	URP	(>80%),	it	
decreased	with	increasing	HH	(>175	tree	cuts/0.2	ha),	silt	(>20%),	
CS	 (>450	trees/0.2	ha)	and	pH	(>7.25).	The	response	of	alpha	di-
versity	 varied	 for	 different	 nutrients.	 The	 K	 concentration	 that	
maximized	1�̄�	was	5.5	gm/Kg	while	 increasing	soil	P	 (>35	mg/Kg)	
was related to decreasing 1�̄�.	Mangrove	communities	showed	 in-
creasing	representativeness	 (for	2�̄�),	 that	 is,	homogeneity	 in	spe-
cies	 composition	with	 increasing	HH	 (>150	 tree	cuts/0.2	ha),	 silt	

TA B L E  1  Results	of	generalized	additive	models	(GAMs)	for	nine	diversity	measures.	Summaries	of	model	fit	in	rightmost	three	columns	
are	only	shown	for	the	best	model	(DE	=	deviance	explained).	Numbers	in	the	main	part	of	the	table	(enclosed	in	box)	represent	the	Relative	
Importance	(RI)	of	each	covariate.	Dark-shaded	cells	highlight	covariates	that	were	retained	in	the	best	model	for	each	biodiversity	index.	
Light-shaded	cells	represent	covariates	retained	in	other	models	within	the	candidate	set.	Dashed	boxes	indicate	no	participation	of	that	
covariate	in	any	of	the	candidate	models.	The	covariate	shorthands	are	community	size	(CS),	upriver	position	(URP),	salinity,	distance	to	
riverbank	(DR),	historical	harvesting	(HH),	acidity	(pH),	silt	concentration,	disease	prevalence	(DP),	soil	total	phosphorus	(P),	soil	potassium	
(K),	elevation	above-average	sea	level	(ELE)	and	soil	NH4.



www.manaraa.com

     |  735SARKER Et Al.

F I G U R E  2  Effects	of	covariates	inferred	from	
our	best	generalized	additive	models	fitted	to	
the	biodiversity	indices	for	q	=	1.	The	solid	line	in	
each	plot	is	the	estimated	spline	function	(on	the	
scale	of	the	linear	predictor),	and	shaded	areas	
represent	the	95%	confidence	intervals.	Estimated	
degrees	of	freedom	are	provided	for	each	smooth	
following	the	covariate	names.	Zero	on	the	y-axis	
indicates	no	effect	of	the	covariate	on	diversity	
index	values.	Covariate	units:	CS	=	total	number	
of	individuals	in	each	plot,	URP	=	%	upriver,	
soil	salinity	=	dS/m,	DR	=	distance	(m)	of	each	
PSP	from	the	riverbank,	historical	harvesting	
(HH)	=	total	number	of	harvested	trees	in	each	plot	
since	1986,	silt	(%),	disease	prevalence	(DP)	=	total	
number	of	diseased	trees	in	each	plot	since	1986,	
P	=	mg/Kg	and	K	=	gm/Kg
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(>20%),	DP	(>25	diseased	trees/0.2	ha)	and	CS	(>450	trees/0.2	ha).	
In	contrast,	communities	showed	decreasing	 representativeness,	
that	 is,	 increasing	heterogeneity	 in	 species	 composition	with	 in-
creasing	salinity	(>6.5	dS/m)	and	URP	(>70%).	Gamma	diversity	(for	

1�)	showed	strong	positive	responses	to	increasing	DR	(>1,000	m),	
salinity	 (>8	dS/m)	 and	 URP	 (>70%),	 and	 negative	 responses	 to	
increasing	 HH	 (>175	 tree	 cuts/0.2	ha),	 silt	 (>20%),	 CS	 (>500	
trees/0.2	ha)	and	pH	(>7.25).

F I G U R E  3  Spatial	distributions	of	SC	alpha,	beta	and	gamma	diversities	(for	q	=	0–2)	over	the	entire	Sundarbans	generated	through	
generalized	additive	models.	Higher	values	of	�̄� and γ	indicate	greater	species	diversity	and	community	contribution	to	the	overall	
diversity	of	the	ecosystem.	Lower	values	of	�̄�	indicate	greater	heterogeneity	in	species	composition	(i.e.,	community	distinctness	from	the	
metacommunity),	and	higher	values	of	�̄�	represent	greater	representativeness	(i.e.,	homogeneity)	in	species	composition.	The	black	contours	
represent	the	three	protected	areas



www.manaraa.com

     |  737SARKER Et Al.

3.3 | Biodiversity maps

Spatial	 diversity	 maps	 are	 presented	 in	 Figure	 3.	 Alpha	 diversity	
maps	(first	row)	uncovered	that	hotspots	in	species	richness	(q = 0),	
Shannon	 entropy	 (q	=	1)	 and	 Simpson's	 concentration	 (q	=	2)	were	
restricted	 to	 the	 northern	 (specifically,	 the	 Kalabogi	 region)	 and	
eastern	(specifically	the	Sharankhola	region)	Sundarbans.	Beta	(sec-
ond	 row)	 and	 gamma	 (third	 row)	 diversity	maps	 revealed	 that	 the	
entire	Sundarbans	looks	homogeneous	when	we	only	looked	at	spe-
cies	presence	or	absence	(q	=	0),	that	is,	not	accounting	for	the	be-
tween-species	variability	in	relative	abundances.	Allowing	increasing	
weight	on	species	abundance	 (q	=	1	and	2)	 revealed	 that	 the	most	
heterogeneous mangrove communities and the communities that 
contributed	most	to	the	overall	biodiversity	of	the	ecosystem	were	
restricted	to	the	northern	upstream	habitat.	Additionally,	our	maps	
indicated	that	the	most	diverse	(i.e.,	biodiversity	hotspots)	and	het-
erogeneous mangrove communities are situated outside the estab-
lished	protected	area	network.	Prediction	error	was	always	reduced	
by	the	use	of	environmental	covariates,	but	particularly	for	predic-
tions	of	alpha	and	gamma	diversity.	In	case	of	beta	diversity,	while	
the	predictive	ability	of	the	GAM	was	better	than	that	of	kriging	for	
0�̄� and 1�̄�,	both	approaches	had	almost	similar	prediction	error	for	2�̄� 
(Table	2).

4  | DISCUSSION

This	study	provides	a	baseline	quantification	and	habitat-based	mod-
elling	of	alpha,	beta	and	gamma	diversity	of	 threatened	mangrove	
communities.	Contrary	to	the	common	assumption	that	one	or	two	
straightforward	 environmental	 gradients	 (salinity	 and	 inundation)	
control	mangrove	biodiversity	 (Ellison,	 2001),	 our	 results	 revealed	
that	several	environmental	drivers,	biotic	interactions	and	historical	

events	contribute	to	the	emergence	of	observed	spatial	patterns	of	
mangrove	biodiversity.	The	high	explanatory	power	and	predictive	
power	of	our	biodiversity	models	confirm	their	usefulness	in	making	
spatially	explicit	predictions	of	species	diversity	and	composition	in	
dynamic	mangrove	ecosystem.	The	ability	of	 the	models	 to	 reveal	
previously	unknown	linkages	between	the	biodiversity	components	
and	abiotic,	biotic	and	disturbance	variables	have	yielded	novel	bio-
logical	insights	and	thus	now	prompt	many	ecological	questions	for	
future	studies.

4.1 | Drivers and responses of biodiversity  
components

Inclusion	 of	 URP	 in	 the	 best	 biodiversity	 GAMs	 suggest	 a	 strong	
influence	of	 the	downstream/upstream	gradient	 in	 shaping	 spatial	
distributions	of	all	aspects	of	biodiversity	in	the	Sundarbans.	Alpha	
diversity,	SC	contribution	to	the	overall	diversity	of	the	ecosystem	
(gamma),	 and	 heterogeneity	 of	 the	 communities	 (beta)	 increased	
along	 the	downstream/upstream	gradient	 (URP	>	65%),	 suggesting	
downstream	and	intermediate-stream	areas	are	no	more	suitable	for	
many	 salt-intolerant	 species	 (e.g.,	H. fomes)	 that	were	 abundant	 in	
the	past	(Gopal	&	Chauhan,	2006).	Instead,	the	late-successional	up-
stream	areas	are	currently	the	most	suitable	habitats	for	widespread	
coexistence	of	 salt-intolerant,	 salt-tolerant	 and	many	 rare	 species,	
corroborating	the	previous	findings	of	Sarker	et	al.	(2016).

Inclusion	of	CS	 in	 all	 the	best	GAMs	demonstrates	 the	 impor-
tance	of	including	at	least	proxies	of	biotic	variables	in	habitat-based	
biodiversity	models.	 Increasing	CS	 significantly	 contributed	 to	de-
creasing	SC	alpha	and	gamma	diversity,	and	increasing	homogeneity	
in	species	composition	(beta),	providing	a	strong	signal	for	biotic	fil-
tering	in	harsh	estuarine	settings.	From	the	response	plots	(Figures	
2,	S2	&	S3),	it	appears	that	this	pattern	arises	when	SCs	have	>450	
trees.	These	SCs	are,	 indeed,	distributed	in	the	north-western	and	
south-western	 hypersaline	 habitats	 and	 Sarker	 et	 al.	 (2016)	 re-
ported	 super-dominance	 of	 small-diameter	 and	 early	 successional	
generalists	(Excoecaria agallocha and Ceriops decandra)	there.	On	the	
other	extreme,	northern	hyposaline	mangrove	communities	which	
are	dominated	by	large-diameter,	 late-successional	specialists	 (e.g.,	
H. fomes and Xylocarpus mekongensis)	 are	 usually	 less	 populated	
and	support	many	associated	rare	endemics,	thus	are	more	diverse	
and	 distinct	 than	 the	 densely	 populated	 hypersaline	 communities	
(Figure	3).

Our	analyses	uncovered	a	strong	impact	of	HH	and	DP	in	shap-
ing	 current	 distributions	 of	 the	 biodiversity	 components	 in	 the	
Sundarbans,	implying	the	importance	of	integrating	past	disturbance	
events	 in	habitat-based	models	 for	more	accurate	predictions.	We	
detect	a	significant	negative	effect	of	HH	on	alpha	and	gamma	di-
versities,	 although	DP	has	no	 visible	 effect.	 This	 discrepancy	may	
be	 related	 to	 local	 extinction	 of	 many	 rare	 endemics	 during	 past	
formal	 and	 informal	 logging	 activities	 and	 high	DP	 (top-dying	 and	
heart	rot	diseases)	in	the	specialists	(i.e.,	H. fomes and X. mekongen‐
sis)	(Banerjee,	Gatti,	&	Mitra,	2017)	that	might	not	lead	to	their	ex-
tirpation	but	reduced	their	relative	abundances	in	a	higher	amount	

TA B L E  2  Comparison	of	predictive	accuracy	(through	leave-
one-out	cross-validation)	of	the	habitat-based	(GAMs)	and	Kriged	
diversity	models	using	normalized	root	mean	square	error	(NRMSE)	
of	the	predicted	versus	the	actual	diversity	values.	NRMSE	is	
expressed	here	as	a	percentage,	where	lower	values	indicate	less	
residual variance.

Diversity types

GAMs Kriging

NRMSE (%)

Alpha 0�̄� 16.52 18.40
1�̄� 14.41 16.03
2�̄� 14.44 16.22

Beta 0�̄� 20.95 24.66
1�̄� 19.21 21.69
2�̄� 23.83 23.44

Gamma 0� 12.99 17.05
1� 9.90 11.33
2� 10.75 13.15
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compared	to	the	generalists.	However,	for	beta	diversity,	both	HH	
and	DP	contributed	to	increasing	homogeneity	in	species	composi-
tion	across	the	SCs	(Figure	2).	This	again	indicates	that	the	diseases	
have	not	 infected	 all	 trees	 equally	 rather,	 they	have	only	 infected	
and	 removed	a	 few	 specialists	 such	 as	H. fomes and X. mekongen‐
sis which have resulted in increasing homogeneity in the mangrove 
communities.	Therefore,	by	using	the	approach	of	Reeve	et	al.	(2016)	
to	 look	 at	 how	DP	 simultaneously	 affects	 alpha,	 beta	 and	 gamma	
diversity,	we	are	now	able	to	get	indications	of	the	pathogenicity	of	
the	disease	(i.e.,	whether	it	is	a	generalist	and	infects	and	removes	all	
species	equally	or	it	is	specialized	on	specific	host	species).

Mangrove	habitats	with	past	logging	history	are	commonly	nu-
trient-poor,	absorb	higher	amounts	of	heavy	metals,	and	are	prone	
to	species	invasion	(Ngole-Jeme,	Fonge,	Tabot,	&	Mumbang,	2016).	
Harvesting-	and	disease-induced	tree	mortalities	have	created	many	
large	as	well	as	small	forest	gaps	in	the	Sundarbans.	Intriguingly,	the	
large	diameter	 tree	 species	 (i.e.,	H. fomes and X. mekongensis)	 that	
still	 dominate	 the	 less	 saline	 habitats,	 recruit	 poorly	 in	 the	 forest	
gaps	 (Iftekhar	 &	 Islam,	 2004).	 Instead,	 these	 forest	 gaps	 are	 in-
creasingly	colonized	by	the	disturbance	specialists	(e.g.,	C. decandra)	
(Mukhopadhyay	et	al.,	2015).	Therefore,	increasing	colonization	and	
dominance	 of	 disturbance	 specialists	 in	 the	 historically	 disturbed	
SCs	are	the	possible	mechanisms	responsible	for	increasing	similar-
ity among mangrove communities.

Highly silted mangrove communities in the Sundarbans are not 
only	poor	 in	alpha	and	gamma	diversities	but	also	almost	similar	
in	species	composition	(Figure	2).	These	results	are	in	agreement	
with	Mitra	and	Zaman	(2016),	reporting	limited	growth	and	regen-
eration	of	many	mangroves	due	to	sediment	burial	of	aerial	roots	
in	 the	 Sundarbans.	 Sediment	 burial	 of	 aerial	 roots	 (inhibits	 root	
aeration)	is	a	major	reason	for	worldwide	mangrove	mortality	(De	
Deurwaerder,	Okello,	Koedam,	Schmitz,	&	Steppe,	2016).	However,	
at	species	level,	sensitivity	of	individual	species	to	sediment	burial	
can	 vary	 substantially.	 For	 example,	 Thampanya,	 Vermaat,	 and	
Terrados	 (2002),	 in	 their	 experimental	 work	 on	 Thailand	 man-
groves,	 observed	 100%	mortality	 in	Avicennia officinalis,	 70%	 in	
Rhizophora mucronata and 40% in Sonneratia caseolaris	under	ex-
treme	sediment	accretion	level	(32	cm).	The	Sundarbans	is	an	ac-
tive	delta	where	the	river	network	annually	transports	about	2.4	
billion	tons	of	sediments	(Mitra	&	Zaman,	2016).	Therefore,	future	
research	 is	 required	 to	 understand	 species-specific	 sensitivities	
and	 adaptations	 (e.g.,	 modified	 rooting	 architecture)	 to	 siltation	
because	this	will	help	to	forecast	which	species	may	colonize	the	
newly	 formed	 islands	 and	 which	 are	 compatible	 for	 replanting	
under	future	siltation	scenarios.

In	their	pioneering	work,	Ellison	et	al.	(2000)	found	no	evidence	
for	“zonation”	in	the	Sundarbans.	In	contrast,	we	detect	a	clear	pat-
tern	of	increasing	alpha	and	gamma	diversities	along	the	riverbank/
forest	interior	gradient.	Communities	that	are	at	least	1,500	m	away	
from	the	riverbank	have	higher	alpha	diversity	and	800	m	away	have	
higher	 gamma	 diversity	 compared	 to	 the	 near-bank	 communities	
(Figure	2),	implying	late-successional	forest	interior	communities	are	
more	diverse	than	the	early	successional	riverbank	communities.

Salinity	 has	 been	 considered	 a	 key	 constraint	 limiting	 species	
richness	in	coastal	ecosystems	(Feller	et	al.,	2010).	It	appears	from	
our	analyses	that	salinity	has	no	effect	on	species	richness	although	
the	importance	of	salinity	slightly	increased	for	Shannon	entropy	and	
Simpson	concentration,	implying	the	role	of	salinity	becomes	clearer	
when	we	account	 for	between-species	variability	 in	 relative	abun-
dance.	Considering	beta	diversity,	increasing	salinity	contributes	to	
increasing	 compositional	 heterogeneity	 among	 the	 SCs	 (Figure	 2).	
This	 pattern	 suggests	 high	plot-to-plot	 variation	 in	 composition	 in	
the	degraded	saline	soils	for	population	declines	and	range	contrac-
tion	of	many	salt-intolerant	specialists	(e.g.,	H. fomes)	and	increasing	
colonization	success	of	the	salt-tolerant	generalists	such	as	E. agallo‐
cha and C. decandra	 (Aziz	&	Paul,	2015;	 Iftekhar	&	Saenger,	2008;	
Mukhopadhyay	et	al.,	2015).

Nitrogen,	phosphorus	and	potassium	were	found	to	be	the	im-
portant	soil	nutrients	 limiting	mangrove	forest	structure	 in	coastal	
areas	 in	 Brazil,	 Florida	 and	 South	 Africa	 (Da	 Cruz	 et	 al.,	 2013;	
Lovelock,	 Ball,	 Feller,	 Engelbrecht,	 &	 Ling,	 2006;	 Naidoo,	 2009).	
Interestingly,	these	resource	variables	received	 less	support	 in	our	
biodiversity	models,	reconfirming	the	high	importance	of	regulators	
and historical disturbances in structuring mangrove communities 
(Twilley	&	Rivera-Monroy,	2005).

4.2 | Mangrove biodiversity maps

Our	 biodiversity	 maps	 for	 the	 Sundarbans	 (Figure	 3)	 reveal	 that	
currently	 the	 most	 species-rich	 (0�̄�)	 mangrove	 communities	 are	
confined	 to	 the	northern	 (specifically,	Kalabogi)	 and	eastern	 (spe-
cifically,	 Sarankhola)	 regions.	 Due	 to	 the	 proximity	 of	 Baleshwar	
and	Posur	rivers,	these	areas	receive	greater	amount	of	freshwater	
than	 the	 rest	 of	 the	 ecosystem,	 thus	 securing	 suitable	 conditions	
for	many	salt-intolerant	and	rare	plant	species.	The	remaining	eco-
system	 is	 relatively	 species-poor.	 1�̄� and 2�̄�	 maps	 not	 only	 show	
similar	patterns	but	also	pinpoint	the	areas—the	north-western	and	
south-western	Sundarbans—where	the	super-dominance	of	gener-
alists	has	 resulted	 in	 lower	alpha	diversity.	These	areas	are	prone	
to	 regular	 saltwater	 flooding	 and	 high	 salinity	 fluctuation	 which	
together	were	 found	 to	 inhibit	 regeneration	 and	 growth	 of	many	
species	 (Ghosh,	Kumar,	&	Roy,	2016).	Spatial	variability	 in	beta	di-
versity	becomes	clearer	when	more	weight	was	put	on	the	dominant	 
species	(1�̄�,	2�̄�),	compared	to	the	rare	species	(0�̄�).	In	general,	the	most	 
heterogenous communities and the communities that contribute 
most	 to	 the	overall	biodiversity	of	 the	whole	ecosystem	 (0�,1�,	2�)	
are	currently	restricted	to	the	northern	upstream	habitats	support-
ing	tree	species	facing	the	risk	of	 local	 (X. mekongensis)	and	global	
(H. fomes)	extinction	(Sarker	et	al.,	2016).

Restricted	distributions	of	diverse	and	distinct	mangrove	com-
munities	in	a	few	specific	areas	clearly	indicate	for	historical	pres-
sures	 on	 Sundarbans's	 floral	 composition,	 as	 reported	 by	 many	
(Aziz	&	Paul,	2015;	Ghosh	et	al.,	2016;	Gopal	&	Chauhan,	2006).	
The	 freshwater	 supply	 from	 the	 transboundary	 rivers	 into	 the	
Sundarbans	 has	 substantially	 declined	 (3,700	m3/s	 to	 364	m3/s)	
since	the	construction	of	the	Farakka	dam	(1974)	 in	India	(Mirza,	
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1998).	The	average	soil	salinity	has	already	increased	by	60%	since	
1980	 (Aziz	&	Paul,	 2015).	Opportunistic	harvesting	of	 trees	 and	
heavy	siltation	 in	 the	 internal	channels	are	ongoing	 (Rahaman	et	
al.,	2015).	Therefore,	our	 findings	 lead	us	 to	conclude	 that	addi-
tional	 harvesting,	 siltation,	 cuts	 in	 freshwater	 supply	 and	 range	
expansions	of	the	generalists	under	projected	sea	level	rise	(Karim	
&	Mimura,	2008)	may	convert	the	whole	Sundarbans	 into	a	spe-
cies-poor	homogeneous	ecosystem.

The	existing	approaches	for	biodiversity	mapping	without	 in-
cluding	environmental	data	are	shown	to	produce	inaccurate	spa-
tial	predictions	of	diversity	 indices	 (Granger	et	al.,	2015).	 In	 this	
study,	 in	 general,	 the	 environmental	 data-driven	 GAMs	 showed	
better	predictive	ability	 than	 the	covariate-free	direct	 interpola-
tion	method	(Table	2),	thus,	supporting	the	inclusion	of	fine-scale	
environmental,	 biotic	 and	 historical	 disturbance	 data	 for	 more	
accurate	 mapping	 of	 biodiversity	 indices	 when	 these	 data	 are	
available.	However,	 similar	performances	of	 these	approaches	 in	
predicting	2�̄�,	and	small	differences	in	prediction	error	for	0�̄� and 
0�,	indicates	the	utility	of	direct	interpolation	methods	when	envi-
ronmental data are not available.

4.3 | Conservation applications

Sea	level	rise	is	 likely	to	have	drastic	 impacts	on	mangrove	forests	
worldwide,	particularly,	the	Sundarbans.	Under	the	projected	range	
of	sea	level	rise	by	2,100	(30–100	cm)	(Karim	&	Mimura,	2008),	the	
Sundarbans	is	likely	to	lose	10%–23%	of	its	present	area	(Payo	et	al.,	
2016)	with	alteration	to	soil	biogeochemistry	(Banerjee	et	al.,	2017)	
and	estuarine	hydrology	(Wahid	et	al.,	2007).	Given	the	severity	of	
these	future	environmental	impacts	on	Sundarbans,	identifying	the	
existing	and	future	environmental	stressors	of	mangrove	biodiversity	
is	important.	We	detect	siltation,	salinity	and	pH	as	the	dominant	en-
vironmental	stressors	responsible	for	decreasing	mangrove	diversity	
(Table	1,	Figure	2	&	Appendix	S3).	These	novel	habitat	insights	can	
guide	the	forest	managers	about	deciding	which	mangrove	commu-
nities	or	which	stressors	to	target	for	future	mangrove	enhancement	
(reducing	abiotic	stresses	that	caused	biodiversity	loss),	restoration	
and	reforestation	initiatives	in	the	Sundarbans.

Our	biodiversity	maps	(Figure	3)	reveal	that	the	surviving	biodi-
versity	 hotspots	 are	 located	 outside	 the	 legislated	 protected	 area	
network.	 These	 hotspots	 are	 very	 close	 to	 local	 communities	 and	
vulnerable	to	opportunistic	tree	harvesting	(Iftekhar	&	Islam,	2004),	
so	 we	 suggest	 bringing	 them	 under	 protected	 area	 management	
for	 their	 immediate	 protection	 and	 long-term	 conservation	 of	 the	
threatened	species	living	there.

Bangladesh	have	recently	developed	the	“Biodiversity	National	
Assessment	and	Program	of	Action	2020”	to	assess	and	monitor	its	
forest	resources	and	to	enforce	appropriate	actions	to	reduce	fur-
ther	exploitation	of	these	resources.	Bangladesh	has	also	formulated	
National	Conservation	Strategy	(2016–2031)	to	foster	development	
through	 the	 conservation	 and	 enhancement	 of	 natural	 resources	
within	 the	 framework	 of	 sustainable	 development,	 particularly	 as	
envisioned	under	the	Sustainable	Development	Goals	(MoEF,	2016).	

The	country	has	also	ratified	the	“Bangladesh	Biodiversity	Act	2017”	
to	stop	illegal	trade	of	forest	flora	and	fauna.	It	has	also	adopted	a	
SMART	(Spatial	Monitoring	and	Reporting	Tool)	patrol	management	
system	 since	 2015	 to	 expand	 the	 scope	 of	 its	 current	 mangrove	
protection	efforts.	Our	baseline	biodiversity	maps	can	guide	these	
valuable	biodiversity	protection	and	conservation	initiatives.	In	ad-
dition,	 these	maps	can	contribute	 to	successful	 implementation	of	
the	REDD+	 (Gardner	et	 al.,	 2012)	 initiatives	 for	 enhancing	 carbon	
stock	(through	biodiversity	conservation)	as	well	as	financial	returns.

5  | CONCLUSIONS

This	 study	 provides	 the	 first	 comprehensive	 and	 coherent	 quan-
tification	 and	 habitat-based	modelling	 of	 alpha,	 beta	 and	 gamma	
diversity	in	threatened	mangrove	communities	of	the	Sundarbans.	
We	find	that	several	environmental	drivers,	biotic	interactions	and	
historical	events	have	combined	effects	on	the	biodiversity	compo-
nents.	 Specifically,	 salinity	 intrusion,	HH,	 increasing	CS,	 siltation,	
disease	 and	 soil	 alkalinity	 are	 the	 dominant	 stressors	 responsible	
for	 reducing	 mangrove	 diversity.	 Although	 habitat-based	 models	
showed	better	predictive	ability	than	the	covariate-free	approach,	
the	 small	margin	of	 differences	between	 the	 approaches	demon-
strates	the	utility	of	direct	interpolation	approaches	when	environ-
mental	 data	 are	 unavailable.	 Our	 biodiversity	 maps	 uncover	 that	
the	most	diverse	and	distinct	mangrove	communities	(biodiversity	
hotspots)	have	restricted	distributions	in	the	freshwater-dominated	
northern	and	eastern	regions.	Although	these	biodiversity	hotspots	
are	susceptible	to	human	exploitation,	they	are	not	included	in	the	
existing	protected	area	network,	thus	suggesting	for	an	immediate	
reconfiguration	of	the	protected	area	network.	We	believe	details	
on	the	environmental	stressors,	and	our	biodiversity	maps,	collec-
tively,	will	contribute	to	designing	and	implementing	climate-smart	
mangrove	 enhancement,	 restoration	 and	 reforestation	 initiatives.	
In	addition,	our	maps	can	guide	the	existing	and	future	mangrove	
biodiversity	protection,	monitoring	and	REDD+	initiatives.

ACKNOWLEDG EMENTS

We	 thank	 the	 editor	 and	 two	 anonymous	 referees	 for	 their	 con-
structive	 suggestions.	 We	 gratefully	 acknowledge	 the	 numer-
ous	 volunteers	who	participated	 in	 fieldwork,	 especially	Mahadee	
Hassan	Rubel,	Sourav	Das,	Niam	Jit	Das,	Harun	Rashid	Khan,	Hasan	
Murshed,	Nusrat	Islam	and	Sontosh	Deb.	We	sincerely	acknowledge	
and	 thank	 the	Bangladesh	Forest	Department	 for	providing	all	 lo-
gistic	 support	 during	 the	 fieldwork.	 SKS	 acknowledges	 the	 finan-
cial	 assistance	 (Reference:	 BDCA-2013-6)	 of	 the	 Commonwealth	
Scholarship	 Commission,	 United	 Kingdom.	 RR	 was	 supported	 by	
BBSRC	 grants	 BB/L004070/1	 and	 BB/P004202/1.	 The	 fieldwork	
was	 supported	by	 the	University	of	Glasgow	start-up	 fund	 to	 JM.	
SKS	 conducted	 this	 work	 as	 a	 part	 of	 his	 doctoral	 studies	 at	 the	
University	 of	 Glasgow,	 and	 an	 earlier	 version	 of	 this	 manuscript	
formed	a	chapter	of	his	PhD	thesis.



www.manaraa.com

740  |     SARKER Et Al.

DATA ACCE SSIBILIT Y

Data	 are	 available	 on	 the	 University	 of	 Glasgow	 data	 archive	
(Enlighten	Research	Data	System)	at	http://dx.doi.org/10.5525/gla.
researchdata.693.

R E FE R E N C E S

Aziz,	 A.,	 &	 Paul,	 A.	 (2015).	 Bangladesh	 sundarbans:	 Present	 status	
of	 the	 environment	 and	 biota.	 Diversity,	 7,	 242–269.	 https://doi.
org/10.3390/d7030242

Banerjee,	 K.,	 Gatti,	 R.	 C.,	 &	Mitra,	 A.	 (2017).	 Climate	 change-induced	
salinity	variation	impacts	on	a	stenoecious	mangrove	species	in	the	
Indian Sundarbans. Ambio,	 46,	 492–499.	 https://doi.org/10.1007/
s13280-016-0839-9

Barton,	 K.	 (2015).	 MuMIn:	 Multi-model	 inference.	 R	 package	 version	
1.10.5.

Berger,	 U.,	 Rivera-Monroy,	 V.	 H.,	 Doyle,	 T.	 W.,	 Dahdouh-Guebas,	 F.,	
Duke,	N.	C.,	Fontalvo-Herazo,	M.	L.,	…	Twilley,	R.	R.	(2008).	Advances	
and	limitations	of	individual-based	models	to	analyze	and	predict	dy-
namics	of	mangrove	forests:	A	review.	Aquatic Botany,	89,	260–274.	
https://doi.org/10.1016/j.aquabot.2007.12.015

Bremner,	J.	M.,	&	Breitenbeck,	G.	A.	(1983).	A	simple	method	for	determi-
nation	of	ammonium	in	semimicro-Kjeldahl	analysis	of	soils	and	plant	
materials	using	a	block	digester.	Communications in Soil Science and Plant 
Analysis,	14,	905–913.	https://doi.org/10.1080/00103628309367418

Burnham,	K.	P.,	&	Anderson,	D.	R.	(2002).	Model selection and multimodel 
inference: A practical information‐theoretic approach	 (2nd	 ed.).	 New	
York,	NY:	Springer-Verlag.

Chowdhury,	M.	Q.,	De	Ridder,	M.,	&	Beeckman,	H.	(2016).	Climatic	sig-
nals	in	tree	rings	of	Heritiera	fomes	Buch.—Ham.	in	the	Sundarbans,	
Bangladesh. PLoS ONE,	11,	e0149788.

Chowdhury,	M.	Q.,	Kitin,	P.,	De	Ridder,	M.,	Delvaux,	C.,	&	Beeckman,	H.	
(2016).	Cambial	dormancy	induced	growth	rings	 in	Heritiera	fomes	
Buch.—Ham.:	 A	 proxy	 for	 exploring	 the	 dynamics	 of	 Sundarbans,	
Bangladesh. Trees,	30,	227–239.

Crase,	B.,	Liedloff,	A.,	Vesk,	P.	A.,	Burgman,	M.	A.,	&	Wintle,	B.	A.	(2013).	
Hydroperiod	is	the	main	driver	of	the	spatial	pattern	of	dominance	
in mangrove communities. Global Ecology and Biogeography,	22,	806–
817.	https://doi.org/10.1111/geb.12063

Da	Cruz,	C.	C.,	Mendoza,	U.	N.,	Queiroz,	J.	B.,	Berrêdo,	J.	F.,	Da	Costa	
Neto,	 S.	 V.,	&	 Lara,	 R.	 J.	 (2013).	Distribution	 of	mangrove	 vegeta-
tion	 along	 inundation,	 phosphorus,	 and	 salinity	 gradients	 on	 the	
Bragança	Peninsula	in	Northern	Brazil.	Plant and Soil,	370,	393–406.	
https://doi.org/10.1007/s11104-013-1619-y

De	Deurwaerder,	H.,	Okello,	J.	A.,	Koedam,	N.,	Schmitz,	N.,	&	Steppe,	K.	
(2016).	How	are	anatomical	and	hydraulic	features	of	the	mangroves	
Avicennia	marina	and	Rhizophora	mucronata	influenced	by	siltation?	
Trees,	30,	35–45.	https://doi.org/10.1007/s00468-016-1357-x

Devictor,	V.,	Mouillot,	D.,	Meynard,	C.,	Jiguet,	F.,	Thuiller,	W.,	&	Mouquet,	
N.	 (2010).	 Spatial	 mismatch	 and	 congruence	 between	 taxonomic,	
phylogenetic	and	functional	diversity:	The	need	for	integrative	con-
servation strategies in a changing world. EcologyLetters,	13,	1030–
1040.	https://doi.org/10.1111/j.1461-0248.2010.01493.x

Duke,	N.	C.	(2001).	Gap	creation	and	regenerative	processes	driving	di-
versity	and	structure	of	mangrove	ecosystems.	Wetlands Ecology and 
Management,	9,	267–279.

Duke,	N.	C.,	Ball,	M.	C.,	&	Ellison,	J.	C.	(1998).	Factors	influencing	biodi-
versity and distributional gradients in mangroves. Global Ecology and 
Biogeography Letters,	7,	27.	https://doi.org/10.2307/2997695

Duke,	 N.	 C.,	 Meynecke,	 J.-O.,	 Dittmann,	 S.,	 Ellison,	 A.	 M.,	 Anger,	
K.,	 Berger,	 U.,	 …	 Dahdouh-Guebas,	 F.	 (2007).	 A	 world	 with-
out	 mangroves?	 Science,	 317,	 41b–42b.	 https://doi.org/10.1126/
science.317.5834.41b

Ellison,	A.	M.	(2001).	Macroecology	of	mangroves:	Large-scale	patterns	
and	processes	in	tropical	coastal	forests.	Trees,	16,	181–194.	https://
doi.org/10.1007/s00468-001-0133-7

Ellison,	A.	M.,	Mukherjee,	B.	B.,	&	Karim,	A.	(2000).	Testing	patterns	of	
zonation	 in	mangroves:	 Scale	 dependence	 and	 environmental	 cor-
relates	in	the	Sundarbans	of	Bangladesh.	Journal of Ecology,	88,	813–
824.	https://doi.org/10.1046/j.1365-2745.2000.00500.x

Farnsworth,	E.	J.	(1998).	Issues	of	spatial,	taxonomic	and	temporal	scale	
in	 delineating	 links	 between	 mangrove	 diversity	 and	 ecosystem	
function.	Global Ecology and Biogeography Letters,	7,	15.	https://doi.
org/10.2307/2997694

Feller,	 I.	 C.,	 Friess,	 D.	 A.,	 Krauss,	 K.	 W.,	 &	 Lewis,	 R.	 R.	 (2017).	 The	
state	 of	 the	 world’s	 mangroves	 in	 the	 21st	 century	 under	 cli-
mate change. Hydrobiologia,	 803,	 1–12.	 https://doi.org/10.1007/
s10750-017-3331-z

Feller,	I.	C.,	Lovelock,	C.	E.,	Berger,	U.,	McKee,	K.	L.,	Joye,	S.	B.,	&	Ball,	
M.	C.	(2010).	Biocomplexity	in	mangrove	ecosystems.	Annual Review 
of Marine Science,	 2,	 395–417.	 https://doi.org/10.1146/annurev.
marine.010908.163809

Ferrier,	S.,	&	Guisan,	A.	 (2006).	Spatial	modelling	of	biodiversity	at	the	
community level. Journal of Applied Ecology,	43,	393–404.	https://doi.
org/10.1111/j.1365-2664.2006.01149.x

Gardner,	 T.	 A.,	 Burgess,	 N.	 D.,	 Aguilar-Amuchastegui,	 N.,	 Barlow,	 J.,	
Berenguer,	E.,	Clements,	T.,	…	Vieira,	I.	C.	G.	(2012).	A	framework	for	
integrating	biodiversity	concerns	into	national	REDD+	programmes.	
Biological Conservation,	 154,	 61–71.	 https://doi.org/10.1016/j.
biocon.2011.11.018

Gee,	G.	W.,	&	Bauder,	J.	W.	(1986).	Particle-size	analysis.	In	A.	Klute	(Ed.),	
Methods of soil analysis. Part 1. Physical and mineralogical methods.	(pp.	
383–411).	Madison,	WI:	Soil	Science	Society	of	America.

Ghosh,	M.,	Kumar,	L.,	&	Roy,	C.	 (2016).	Mapping	 long-term	changes	 in	
mangrove	species	composition	and	distribution	 in	 the	Sundarbans.	
Forests,	7,	305.	https://doi.org/10.3390/f7120305

Gopal,	 B.,	 &	 Chauhan,	M.	 (2006).	 Biodiversity	 and	 its	 conservation	 in	
the	Sundarban	Mangrove	Ecosystem.	Aquatic Sciences,	68,	338–354.	
https://doi.org/10.1007/s00027-006-0868-8

Granger,	 V.,	 Bez,	 N.,	 Fromentin,	 J.-M.,	 Meynard,	 C.,	 Jadaud,	 A.,	
&	 Mérigot,	 B.	 (2015).	 Mapping	 diversity	 indices:	 Not	 a	 trivial	
issue. Methods in Ecology and Evolution,	 6,	 688–696.	 https://doi.
org/10.1111/2041-210X.12357

Guisan,	A.,	&	Thuiller,	W.	(2005).	Predicting	species	distribution:	Offering	
more	 than	 simple	 habitat	 models.	 Ecology Letters,	 8,	 993–1009.	
https://doi.org/10.1111/j.1461-0248.2005.00792.x

Hardie,	M.,	&	Doyle,	R.	(2012).	Measuring	soil	salinity.	In	S.	Shabala	&	T.	
A.	Cuin	(Eds.),	Plant salt tolerance	(pp.	415–425).	Totowa,	NJ:	Humana	
Press.

Hijmans,	R.	J.	(2017).	raster:	Geographic	Data	Analysis	and	Modeling.	R	
package	version	2.6-7.

Hill,	M.	O.	 (1973).	Diversity	 and	evenness:	A	unifying	notation	and	 its	
consequences.	Ecology,	54,	427.	https://doi.org/10.2307/1934352

Howard,	R.	J.,	Krauss,	K.	W.,	Cormier,	N.,	Day,	R.	H.,	Biagas,	J.,	&	Allain,	L.	
(2015).	Plant-plant	interactions	in	a	subtropical	mangrove-to-marsh	
transition	zone:	Effects	of	environmental	drivers.	Journal of Vegetation 
Science,	26,	1198–1211.	https://doi.org/10.1111/jvs.12309

Iftekhar,	M.	S.,	&	Islam,	M.	R.	(2004).	Managing	mangroves	in	Bangladesh:	
A strategy analysis. Journal of Coastal Conservation,	10,	139.	https://
doi.org/10.1652/1400-0350(2004)010[0139:MMIBAS]2.0.CO;2

Iftekhar,	 M.	 S.,	 &	 Saenger,	 P.	 (2008).	 Vegetation	 dynamics	 in	 the	
Bangladesh	 Sundarbans	 mangroves:	 A	 review	 of	 forest	 invento-
ries. Wetlands Ecology and Management,	 16,	 291–312.	 https://doi.
org/10.1007/s11273-007-9063-5

IWM	(2003)	Sundarban	Biodiversity	Conservation	Project.	1.
Jost,	L.	(2006).	Entropy	and	diversity.	Oikos,	113,	363–375.
Jost,	L.	(2007).	Partitioning	diversity	into	independent	alpha	and	beta	com-

ponents.	Ecology,	88,	2427–2439.	https://doi.org/10.1890/06-1736.1

http://dx.doi.org/10.5525/gla.researchdata.693
http://dx.doi.org/10.5525/gla.researchdata.693
https://doi.org/10.3390/d7030242
https://doi.org/10.3390/d7030242
https://doi.org/10.1007/s13280-016-0839-9
https://doi.org/10.1007/s13280-016-0839-9
https://doi.org/10.1016/j.aquabot.2007.12.015
https://doi.org/10.1080/00103628309367418
https://doi.org/10.1111/geb.12063
https://doi.org/10.1007/s11104-013-1619-y
https://doi.org/10.1007/s00468-016-1357-x
https://doi.org/10.1111/j.1461-0248.2010.01493.x
https://doi.org/10.2307/2997695
https://doi.org/10.1126/science.317.5834.41b
https://doi.org/10.1126/science.317.5834.41b
https://doi.org/10.1007/s00468-001-0133-7
https://doi.org/10.1007/s00468-001-0133-7
https://doi.org/10.1046/j.1365-2745.2000.00500.x
https://doi.org/10.2307/2997694
https://doi.org/10.2307/2997694
https://doi.org/10.1007/s10750-017-3331-z
https://doi.org/10.1007/s10750-017-3331-z
https://doi.org/10.1146/annurev.marine.010908.163809
https://doi.org/10.1146/annurev.marine.010908.163809
https://doi.org/10.1111/j.1365-2664.2006.01149.x
https://doi.org/10.1111/j.1365-2664.2006.01149.x
https://doi.org/10.1016/j.biocon.2011.11.018
https://doi.org/10.1016/j.biocon.2011.11.018
https://doi.org/10.3390/f7120305
https://doi.org/10.1007/s00027-006-0868-8
https://doi.org/10.1111/2041-210X.12357
https://doi.org/10.1111/2041-210X.12357
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.2307/1934352
https://doi.org/10.1111/jvs.12309
https://doi.org/10.1652/1400-0350(2004)010[0139:MMIBAS]2.0.CO;2
https://doi.org/10.1652/1400-0350(2004)010[0139:MMIBAS]2.0.CO;2
https://doi.org/10.1007/s11273-007-9063-5
https://doi.org/10.1007/s11273-007-9063-5
https://doi.org/10.1890/06-1736.1


www.manaraa.com

     |  741SARKER Et Al.

Karim,	M.	F.,	&	Mimura,	N.	 (2008).	 Impacts	of	climate	change	and	sea-
level	 rise	 on	 cyclonic	 storm	 surge	 floods	 in	 Bangladesh.	 Global 
Environmental Change,	 18,	 490–500.	 https://doi.org/10.1016/j.
gloenvcha.2008.05.002

Lee,	 S.	 Y.,	 Primavera,	 J.	H.,	Dahdouh-Guebas,	 F.,	McKee,	K.,	 Bosire,	 J.	
O.,	Cannicci,	S.,	…	Record,	S.	(2014).	Ecological	role	and	services	of	
tropical	mangrove	ecosystems:	A	 reassessment.	Global Ecology and 
Biogeography,	23,	726–743.	https://doi.org/10.1111/geb.12155

Leinster,	 T.,	 &	 Cobbold,	 C.	 A.	 (2012).	 Measuring	 diversity:	 The	 im-
portance	 of	 species	 similarity.	 Ecology,	 93,	 477–489.	 https://doi.
org/10.1890/10-2402.1

Lewis,	R.	R.	 (2005).	Ecological	engineering	 for	 successful	management	
and	restoration	of	mangrove	forests.	Ecological Engineering,	24,	403–
418.	https://doi.org/10.1016/j.ecoleng.2004.10.003

Lovelock,	 C.	 E.,	 Ball,	 M.	 C.,	 Feller,	 I.	 C.,	 Engelbrecht,	 B.	 M.	 J.,	 &	
Ling,	 E.	 M.	 (2006).	 Variation	 in	 hydraulic	 conductivity	 of	 man-
groves:	 Influence	 of	 species,	 salinity,	 and	 nitrogen	 and	 phospho-
rus availability. Physiologia Plantarum,	 127,	 457–464.	 https://doi.
org/10.1111/j.1399-3054.2006.00723.x

Mateo,	R.	G.,	Mokany,	K.,	&	Guisan,	A.	(2017).	Biodiversity	models:	What	
if	unsaturation	is	the	rule?	Trends in Ecology & Evolution,	32,	556–566.	
https://doi.org/10.1016/j.tree.2017.05.003

Mirza,	M.	M.	Q.	 (1998).	Diversion	of	 the	Ganges	water	at	Farakka	and	
its	effects	on	salinity	in	Bangladesh.	Environmental Management,	22,	
711–722.

Mitchell,	S.	N.,	&	Reeve,	R.	(2017).	Rdiversity—an	R	package	for	measur-
ing	similarity-sensitive	diversity.	R	package	version	1.0.

Mitra,	A.,	&	Zaman,	S.	(2016).	Basics of marine and estuarine ecology.	New	
Delhi:	Springer	India.

MoEF	(2016)	Bangladesh	National	Conservation	Strategy.
Mukhopadhyay,	A.,	Mondal,	 P.,	 Barik,	 J.,	Chowdhury,	 S.	M.,	Ghosh,	 T.,	

&	Hazra,	S.	 (2015).	Changes	 in	mangrove	species	assemblages	and	
future	prediction	of	the	Bangladesh	Sundarbans	using	Markov	chain	
model and cellular automata. Environmental Science: Processes & 
Impacts,	17,	1111–1117.

Naidoo,	 G.	 (2009).	 Differential	 effects	 of	 nitrogen	 and	 phospho-
rus	 enrichment	 on	 growth	 of	 dwarf	 Avicennia	 marina	 man-
groves. Aquatic Botany,	 90,	 184–190.	 https://doi.org/10.1016/j.
aquabot.2008.10.001

Ngole-Jeme,	 V.	M.,	 Fonge,	 B.	 A.,	 Tabot,	 P.	 T.,	 &	Mumbang,	 C.	 (2016).	
Impact	 of	 logging	 activities	 in	 a	 tropical	 mangrove	 on	 ecosys-
tem diversity and sediment heavy metal concentrations. Journal 
of Coastal Conservation,	 20,	 245–255.	 https://doi.org/10.1007/
s11852-016-0435-y

Osland,	M.	J.,	Feher,	L.	C.,	Griffith,	K.	T.,	Cavanaugh,	K.	C.,	Enwright,	N.	
M.,	Day,	R.	H.,	…	Rogers,	K.	 (2017).	Climatic	 controls	on	 the	global	
distribution,	 abundance,	 and	 species	 richness	 of	 mangrove	 for-
ests. Ecological Monographs,	 87,	 341–359.	 https://doi.org/10.1002/
ecm.1248

Payo,	A.,	Mukhopadhyay,	A.,	Hazra,	S.,	Ghosh,	T.,	Ghosh,	S.,	Brown,	S.,	…	
Haque,	A.	(2016).	Projected	changes	in	area	of	the	Sundarban	man-
grove	forest	in	Bangladesh	due	to	SLR	by	2100.	Climatic Change,	139,	
279–291.	https://doi.org/10.1007/s10584-016-1769-z

Pebesma,	E.	J.	(2004).	Multivariable	geostatistics	in	S:	The	gstat	package.	
Computers & Geosciences,	 30,	 683–691.	 https://doi.org/10.1016/j.
cageo.2004.03.012

Polidoro,	B.	A.,	Carpenter,	K.	E.,	Collins,	L.,	Duke,	N.	C.,	Ellison,	A.	M.,	
Ellison,	J.	C.,	…	Yong,	J.	W.	H.	(2010).	The	loss	of	species:	Mangrove	
extinction	risk	and	geographic	areas	of	global	concern.	PLoS ONE,	5,	
e10095.	https://doi.org/10.1371/journal.pone.0010095

R	 Core	 Team	 R	 (2016).	 R: A language and environment for statistical 
computing.

Rahaman,	 S.	M.	B.,	 Rahaman,	M.	 S.,	Ghosh,	A.	K.,	Gain,	D.,	 Biswas,	 S.	
K.,	Sarder,	L.,	…	Sayeed,	A.	B.	(2015).	A	spatial	and	seasonal	pattern	

of	 water	 quality	 in	 the	 Sundarbans	 river	 systems	 of	 Bangladesh.	
Journal of Coastal Research,	300,	390–397.	https://doi.org/10.2112/
JCOASTRES-D-13-00115.1

Record,	 S.,	 Charney,	 N.	 D.,	 Zakaria,	 R.	 M.,	 &	 Ellison,	 A.	 M.	 (2013).	
Projecting	 global	 mangrove	 species	 and	 community	 distributions	
under climate change. Ecosphere,	4,	art34.	https://doi.org/10.1890/
ES12-00296.1

Reef,	R.,	Feller,	 I.	C.,	&	Lovelock,	C.	E.	 (2010).	Nutrition	of	mangroves.	
Tree Physiology,	 30,	 1148–1160.	 https://doi.org/10.1093/treephys/
tpq048

Reeve,	 R.,	 Leinster,	 T.,	 Cobbold,	 C.	 A.,	 Thompson,	 J.,	 Brummitt,	 N.,	
Mitchell,	 S.	 N.,	 &	 Matthews,	 L.	 (2016).	 How	 to	 partitiondiversity.	
arXiv [q‐bio.QM],	1404.6520.

Rényi,	A.	(1961).	On	measures	of	entropy	and	information.	Entropy,	547,	
547–561.

Richards,	D.	 R.,	&	 Friess,	D.	A.	 (2016).	 Rates	 and	 drivers	 of	mangrove	
deforestation	 in	 Southeast	 Asia,	 2000–2012.	 Proceedings of the 
National Academy of Sciences,	113,	344–349.	https://doi.org/10.1073/
pnas.1510272113

Ricklefs,	R.	E.,	Schwarzbach,	A.	E.,	&	Renner,	S.	S.	(2006).	Rate	of	lineage	
origin	explains	the	diversity	anomaly	in	the	world’s	mangrove	vege-
tation. The American Naturalist,	168,	805–810.

Robinson,	C.,	&	 Schumacker,	 R.	 (2009).	 Interaction	 effects:	Centering,	
variance	 inflation	 factor,	 and	 interpretation	 issues.	Multiple Linear 
Regression Viewpoints,	35,	6–11.

Saenger,	 P.	 (2002).	 Mangrove ecology, silviculture and conservation. 
Dordrecht,	Netherlands:	Springer.

Sarker,	 S.	 K.,	 Reeve,	 R.,	 Thompson,	 J.,	 Paul,	 N.	 K.,	 &	 Matthiopoulos,	
J.	 (2016).	 Are	 we	 failing	 to	 protect	 threatened	 mangroves	 in	 the	
Sundarbans	world	heritage	ecosystem?	Scientific Reports,	6,	21234.	
https://doi.org/10.1038/srep21234

Shannon,	 C.	 E.	 (1948).	 A	 mathematical	 theory	 of	 communica-
tion. Bell System Technical Journal,	 27,	 379–423.	 https://doi.
org/10.1002/j.1538-7305.1948.tb01338.x

Simpson,	E.	H.	(1948).	Measurement	of	diversity.	Nature,	163,	688.
Socolar,	 J.	B.,	Gilroy,	 J.	 J.,	 Kunin,	W.	E.,	&	Edwards,	D.	 P.	 (2015).	How	

should	 beta-diversity	 inform	 biodiversity	 conservation?	 Trends in 
Ecology and Evolution,	31,	67–80.

Thampanya,	U.,	Vermaat,	 J.	E.,	&	Terrados,	 J.	 (2002).	The	effect	of	 in-
creasing	 sediment	 accretion	 on	 the	 seedlings	 of	 three	 common	
Thai	 mangrove	 species.	 Aquatic Botany,	 74,	 315–325.	 https://doi.
org/10.1016/S0304-3770(02)00146-8

Twilley,	R.	R.,	&	Rivera-Monroy,	V.	H.	 (2005).	Developing	performance	
measures	of	mangrove	wetlands	using	simulation	models	of	hydrol-
ogy,	nutrient	biogeochemistry,	and	community	dynamics.	Journal of 
Coastal Research,	79–93.

Ueda,	I.,	&	Wada,	T.	(1970).	Determination	of	inorganic	phosphate	by	the	
molybdovanadate	method	in	the	presence	of	ATP	and	some	interfer-
ing organic bases. Analytical Biochemistry,	37,	 169–174.	 https://doi.
org/10.1016/0003-2697(70)90273-3

Veach,	V.,	Di	Minin,	 E.,	 Pouzols,	 F.	M.,	&	Moilanen,	A.	 (2017).	 Species	
richness	as	criterion	for	global	conservation	area	placement	leads	to	
large	losses	in	coverage	of	biodiversity.	Diversity and Distributions,	23,	
715–726.	https://doi.org/10.1111/ddi.12571

Wahid,	S.	M.,	Babel,	M.	S.,	&	Bhuiyan,	A.	R.	(2007).	Hydrologic	monitor-
ing	and	analysis	in	the	Sundarbans	mangrove	ecosystem,	Bangladesh.	
Journal of Hydrology,	 332,	 381–395.	 https://doi.org/10.1016/j.
jhydrol.2006.07.016

Whittaker,	 R.	 (1960).	 Vegetation	 of	 the	 Siskiyou	 Mountains,	 Oregon	
and	 California.	 Ecological Monographs,	 30,	 279–338.	 https://doi.
org/10.2307/1943563

Wood,	 S.	 N.	 (2011).	 Fast	 stable	 restricted	 maximum	 likelihood	
and	 marginal	 likelihood	 estimation	 of	 semiparametric	 gen-
eralized linear models. Journal of the Royal Statistical Society: 

https://doi.org/10.1016/j.gloenvcha.2008.05.002
https://doi.org/10.1016/j.gloenvcha.2008.05.002
https://doi.org/10.1111/geb.12155
https://doi.org/10.1890/10-2402.1
https://doi.org/10.1890/10-2402.1
https://doi.org/10.1016/j.ecoleng.2004.10.003
https://doi.org/10.1111/j.1399-3054.2006.00723.x
https://doi.org/10.1111/j.1399-3054.2006.00723.x
https://doi.org/10.1016/j.tree.2017.05.003
https://doi.org/10.1016/j.aquabot.2008.10.001
https://doi.org/10.1016/j.aquabot.2008.10.001
https://doi.org/10.1007/s11852-016-0435-y
https://doi.org/10.1007/s11852-016-0435-y
https://doi.org/10.1002/ecm.1248
https://doi.org/10.1002/ecm.1248
https://doi.org/10.1007/s10584-016-1769-z
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1371/journal.pone.0010095
https://doi.org/10.2112/JCOASTRES-D-13-00115.1
https://doi.org/10.2112/JCOASTRES-D-13-00115.1
https://doi.org/10.1890/ES12-00296.1
https://doi.org/10.1890/ES12-00296.1
https://doi.org/10.1093/treephys/tpq048
https://doi.org/10.1093/treephys/tpq048
https://doi.org/10.1073/pnas.1510272113
https://doi.org/10.1073/pnas.1510272113
https://doi.org/10.1038/srep21234
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1016/S0304-3770(02)00146-8
https://doi.org/10.1016/S0304-3770(02)00146-8
https://doi.org/10.1016/0003-2697(70)90273-3
https://doi.org/10.1016/0003-2697(70)90273-3
https://doi.org/10.1111/ddi.12571
https://doi.org/10.1016/j.jhydrol.2006.07.016
https://doi.org/10.1016/j.jhydrol.2006.07.016
https://doi.org/10.2307/1943563
https://doi.org/10.2307/1943563


www.manaraa.com

742  |     SARKER Et Al.

Series B (Statistical Methodology),	 73,	 3–36.	 https://doi.
org/10.1111/j.1467-9868.2010.00749.x

BIOSKE TCH

Swapan K. Sarker is broadly interested in understanding the 
diversity	 and	 distributions	 of	 organisms	 in	 the	 tropical	 forest	
ecosystems.	 He	 follows	 a	 mixture	 of	 approaches—population	
ecology,	 community	 ecology,	 spatial	 ecology	 and	 trait-based	
ecology—to	 connect	 ecological	models	with	 real-world	 conser-
vation	problems.

Author	contributions:	S.K.S.,	J.M.	and	R.R.	designed	the	research;	
S.K.S.	and	N.K.P.	collected	the	field	data;	S.K.S.	analysed	the	data	
with	advice	 from	J.M.	 and	R.R;	 and	S.K.S.	prepared	 the	manu-
script	with	comments	and	edits	from	J.M.	and	R.R.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.	

How to cite this article:	Sarker	SK,	Reeve	R,	Paul	NK,	
Matthiopoulos	J.	Modelling	spatial	biodiversity	in	the	world’s	
largest mangrove ecosystem—The Bangladesh Sundarbans: A 
baseline	for	conservation.	Divers Distrib. 2019;25:729–742. 
https://doi.org/10.1111/ddi.12887

https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/ddi.12887


www.manaraa.com

© 2019. This work is published under
http://creativecommons.org/licenses/by/4.0/(the “License”).  Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.


